Новая защита для промышленных и медицинских изделий

Учёные Тольяттинского государственного университета (ТГУ) вывели на качественно новый уровень технологию плазменно-электролитической обработки. Это позволит управлять её производительностью и свойствами керамических слоёв, формируемых на поверхности изделий, применяемых в энергетическом и химическом машиностроении, медицине и других областях промышленности, а главное, надёжно прогнозировать ожидаемые эффекты от варьирования параметров обработки.
Новая защита для промышленных и медицинских изделий

Плазменно-электролитическое оксидирование (ПЭО) используется для создания защитных керамических оксидных покрытий (слоёв) на изделиях из лёгких сплавов, работающих в экстремальных условиях. Изучением и усовершенствованием технологии ПЭО в Тольяттинском госуниверситете занимаются при поддержке Российского научного фонда в научно-исследовательском отделе (НИО) «Оксидные слои, плёнки и покрытия» под научным руководством профессора, доктора физико-математических наук Михаила Криштала при участии ведущего научного сотрудника Израильского политехнического института (Технион) физика-теоретика, PhD Александра Кацмана.

– Направленный поиск оптимальных решений (подбор параметров ПЭО) затруднён отсутствием чёткого понимания физических основ формирования таких покрытий. Поэтому создание физической модели ПЭО как совокупности физических явлений остаётся высоко актуальной задачей, – говорит Михаил Криштал. – В то же время технология ПЭО не так давно была молицирована путём введения в электролит различных керамических наночастиц. Поскольку возникающие при этом синергетические эффекты, фактически, привели к появлению новой ещё более эффективной технологии гибридной плазменно-электролитической обработки (ГибПЭО), это ещё более усложнило понимание физики процесса. Исследования ПЭО с добавками наночастиц активно ведутся во всем мире с нарастающей интенсивностью в последние 5-10 лет. По сути идёт период накопления информации, причём в достаточно хаотичном режиме. Поэтому мы почувствовали острую необходимость обобщения своих и других известных результатов для выхода на качественно иной уровень исследований и разработок.

В итоге исследователи ТГУ разработали теорию, которая позволяет описать и количественно предсказать семь видов взаимодействия частиц с оксидным слоем, и доказали её состоятельность, проведя многочисленные эксперименты, а также обобщив данные других исследователей из сотни источников.

– В нашей работе обобщены и теоретически обоснованы общие и отличительные особенности механизмов взаимодействия наночастиц с оксидным покрытием, формируемым методом ГибПЭО на лёгких сплавах. Мы использовали в основном силумины (сплавы алюминия с кремнием) и сплавы на основе магния при их ГибПЭО с наночастицами карбида титана, диоксида кремния и диоксида циркония. Однако обобщение распространяется и на другие материалы и частицы, – поясняет начальник лаборатории структурно-фазового анализа НИИ прогрессивных технологий ТГУ, кандидат технических наук Антон Полунин.

Исследователи показали, что взаимодействие заряженных керамических ускоренных электрическим полем наночастиц с оксидным слоем определяется трансформацией кинетической энергии наночастиц в нагрев и пластическую деформацию, в фазовые превращения, а также в создание новых поверхностных дефектов. Одним из основных контролирующих факторов стало соотношение твёрдости частиц и оксидного слоя, а также поверхностного заряда на частицах.

– В случае подробно рассмотренного в работе взаимодействия частиц диоксида кремния с оксидным слоем, формируемым на силуминах, образующееся покрытие оказывается твёрже керамических наночастиц, а в остальных случаях наоборот – наночастицы оказываются твёрже оксидного слоя. Это определило две основные группы сценариев взаимодействия наночастиц с покрытием, формируемым при ГибПЭО, – говорит Михаил Криштал. – Но сценарии зависят не только от соотношения твёрдости слоя и добавляемых частиц, а также от распределения введённых в электролит частиц по размерам, от температурно-барических условий фазовых превращений в наночастицах (включая условия их расплавления) и от основных параметров процесса ПЭО.

В итоге учёные с единых позиций описали семь 7 различных сценариев взаимодействия добавленных в электролит керамических наночастиц с оксидным слоем при его формировании методом ГибПЭО.

– Поскольку в электролите всегда присутствуют частицы не одного размера, а в некотором диапазоне размеров – как правило от 10-30 до 100 нм и более – это определяет возможность одновременной реализации до четырёх сценариев взаимодействия наночастиц с оксидным слоем. Синергизм гибридной обработки проявляется в несводимости получаемых эффектов к простой сумме плазменно-электролитического воздействия на материал и добавок наночастиц в электролит – малое количество вводимых частиц (как правило в диапазоне 0,3–3 г/л электролита) приводит к кратным и многократным эффектам, – отмечает Михаил Криштал.

В конечном итоге, с помощью наночастиц при ГибПЭО удаётся в разы повысить износостойкость покрытий и в десятки раз их коррозионную стойкость, а также сократить время обработки и энергоёмкость процесса в несколько раз. Таким образом, эффективность технологии повышается многократно.

Результаты своей работы учёные представили в статье, которая была опубликована в Ceramics International – высокорейтинговом научном журнале, освещающем науку о современных керамических материалах (Q1 по SJR, IF 2024 – 5,2, индексируется Scopus).

Работа выполнена при поддержке РНФ (проект № 21-19-00656) в рамках передовой инженерной школы «Гибридные и комбинированные технологии», созданной ТГУ в 2023 году при поддержке высокотехнологичных компаний, включая генерального партнёра АО «АВТОВАЗ».

Читайте также

все

Проект студентов ТГУ повысит износостойкость двигателя

В Передовой инженерной школе «Гибридные и комбинированные технологии» Тольяттинского государственног...

«Экзотика» профессора Хачатурова

В Доме учёных Тольяттинского госуниверситета (ТГУ) состоялось заседание, приуроченное ко Дню юриста....

MgSorb: тест на надёжность пройден

Биорезорбируемый имплантат, разработанный специалистами ООО «Медицинская торговая компания» (МТУ) и...

Исследования ТГУ по магнию поддержит РНФ

Три проекта молодых учёных Тольяттинского госуниверситета (ТГУ) получат гранты Российского научного...

В ТГУ сыграли в науку

В Тольяттинском государственном университете провели научно-популярную интеллектуальную игру «Наука....

Учёный ТГУ рассказал о преподавании, исследованиях и Китае

В Точке кипения Тольяттинского государственного университета (ТГУ) состоялась научно-популярная лекц...

Студенты ТГУ изучают цифровой инжиниринг в Санкт-Петербурге

Три студента передовой инженерной школы «Гибридные и комбинированные технологии» Тольяттинского госу...
Премия Правительства РФ в области качества
Лауреат 2019
Конкурс «Проектный Олимп»
I место 2019